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Non-Markovian Brownian motion in a periodic potential is studied by means 
of an electronic analogue simulator. Velocity spectra, the Fourier transforms of 
velocity autocorrelation functions, are obtained for three types of random force, 
that is, a white noise, an Ornstein-Uhlenbeck process, and a quasimono- 
chromatic noise. The analogue results are in good agreement both with 
theoretical ones calculated with the use of a matrix-continued-fraction method, 
and with the results of digital simulations. An unexpected extra peak in the 
velocity spectrum is observed for Ornstein-Uhlenbeck noise with large correla- 
tion time. The peak is attributed to a slow oscillatory motion of the Brownian 
particle as it moves back and forth over several lattice spaces. Its relationship 
to an approximate Langevin equation is discussed. 

KEY WORDS:  Analog simulation; non-Markovian process; periodic poten- 
tial; velocity spectrum; colored noise; Brownian motion; Langevin equation; 
matrix-continued-fraction method. 

1. I N T R O D U C T I O N  

Brownian motion in a periodic potential has been widely studied in many 
branches of physics and chemistry, for example, as a model of the diffusive 
motion of impurities in crystals, the motion of ions in superionic conduc- 
tors, chemical reactions, and so on. (1 7,11) Non-Markovian effects for 
Brownian motion have recently been investigated by many workersJ 7-15) In 
a previous paper, (1) one of the authors (A.I.) investigated the escape rate 
from a potential well and velocity autocorrelation functions for this model 
theoretically by use of the matrix-continued-fraction (MCF) method, (2'4) 

1 Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan. 
2 School of Physics and Materials, University of Lancaster, Lancaster, LA! 4YB, United 

Kingdom. 

1059 

0022-4715/92/0200-1059506.50/0 �9 1992 Plenum Publishing Corporation 



1060 Igarashi e t  al. 

and compared non-Markovian effects for the three kinds of random force. 
As mentioned in ref. 1, however, it becomes very difficult to calculate the 
velocity spectrum for small values of the friction and other parameters 
theoretically from MCF because of the explosive increase of computing 
time and memory size required even if supercomputers can be used. 
Simulation is potentially a useful method to apply in cases such as this, 
where theories do not work well. Experiments based on analogue electronic 
circuits can provide a powerful method for simulating stochastic nonlinear 
differential equations. (16) 

In this paper, non-Markovian Brownian motion in a periodic poten- 
tial under the influence of colored random forces is simulared with the use 
of analogue electronic circuits. We consider three kinds of random force: 
a white noise (WN), an Ornstein-Uhlenbeck process (OU), and a 
quasimonochromatic noise (QMN), which have Dirac delta correlation, 
exponential correlation, and damped-oscillatory correlation, respectively. 
Hereafter, our models with the random forces of WN, OU, and QMN are 
called models (a), (b), and (c), respectively. Since velocity spectra (VS), 
that is, the Fourier transforms of the velocity autocorrelation functions of 
the Brownian particle, are convenient quantities to describe the charac- 
teristics of its motion, we measure and investigate them in detail. 

First, we obtain VS for the parameter region in which they can be 
calculated theoretically with the use of MCF and compare the simulation 
results with theoretical ones in order to confirm the accuracy of our 
analogue simulation. Next, we measure the VS for the parameter range for 
which MCF theory does not work well. For example, the VS for model (b) 
with large correlation time of the random force is obtained. In this case, we 
discover an unexpected extra peak in the VS on the left of the usual peak 
corresponding to oscillation of the particle near the bottom of a potential 
well (which always exists in VS for the three models with arbitrary values 
of the parameters). This extra peak has not been observed either in model 
(a) or in model (b) with small correlation time of the random force. From 
observation of the actual motion of the particle for the above case, we see 
that there exist two quite different characteristic motions of the particle, 
that is, fast oscillation near the bottoms of potential wells and a motional 
pattern in which the Brownian particle goes back and forth over several 
lattice spaces. From these facts, we conclude that the latter type of dynami- 
cal behavior causes the new peak. We further investigate the dependence of 
the frequency at the peak upon the correlation time of the random force 
and upon the friction constant. A possible relationship between the extra 
peak and an approximate Langevin equation, which entirely neglects the 
force due to the periodic potential, is explored. 

In Section 2, we specify our models for Brownian motion. Section 3 
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contains the description of our analogue simulation. The simulation results 
are analyzed in Section 4. In Section 5, the relationship between the extra 
peak and the approximate Langevin equation is discussed. We summarize 
our conclusions in Section 6. 

2. N O N - M A R K O V I A N  B R O W N I A N - M O T I O N  M O D E L  

We consider the non-Markovian Brownian-motion model governed by 
the following generalized Langevin equation: 

d2x dV(x) f~ dx(s) + F(t) (1) M-if;g= dx M ds K ( t -  s). ds 

where x(t) denotes the position of the Brownian particle with mass M and 
V(x) is a periodic potential, 

Eb is the amplitude of V(x) with lattice constant a. The effective friction 
constant ( for this system is defined by 

= K ( s )  ds 

and the fluctuation dissipation relation holds, that is, 

(F(t) F(s) ) = MKB TK(t - s) 

(3) 

(4) 

where kB and T are the Boltzmann constant and temperature, respectively. 
( A )  expresses the ensemble average of a dynamical variable A. 

Three types of random force F(t) are considered: 

model (a) F(t) = (~Mk B T)l/2 f( t)  (5) 

dF(t) 
model (b) dt - -?F(t)+ (72~MkB T)'/2 f( t)  (6) 

d2F(t) _Q2F(t ) _  ~ dF(t) 
model (c) dt 2 - --7[-+ ((24~MkBT)l/2 f( t)  (7) 

The f ( t )  denotes white noise whose correlation is 

( f ( t )  f(s) ) = 26(t - s) (8) 
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For model (a), F(t) is a white noise process (WN). Since F(t) has the 
Dirac delta correlation, K(t) is, from (4) and (5), given by, 

K(t) = 2~'6(t) (9) 

The random force for model (b) is an Ornstein-Uhlenbeck process (OU), 
which has exponential correlation. From (4) and (6), we have 

K(t) = (7 e-yl'l (10) 

In model (c), the Brownian particle is influenced by a quasimonochromatic 
noise (QMN) in which the random force has a damped oscillatory correla- 
tion. With the use of (4) and (7), K(t) is expressed by 

K(t)=-~-~exp( -~]tl---~-)Icos((oa t) + ~-7~1( sin(co I ]t])l (11) 

with co 1 = (s 2 -  ~2/4)1/2. 
In model (a), (1) is rewritten as a first-order simultaneous stochastic 

differential equation as follows: 

2 ~ V  

~=-~v . . ~ +  f(t) 

(12) 

where v denotes the velocity of the particle. From (12), we see that 
(x, v = 2) is a Markovian process with two variables in model (a). On the 
other hand, (x, v = 2) does not constitute a Markovian process in models 
(b) and (c). These models can be regarded, however, as being Markovian, 
if we introduce some additional variables. For model (b), introducing an 
additional variable z, we can transform the Langevin equation (1) to 

2=v 

1 dr(x)  fJ= - - + z  
M dx (13) 

( )1j2 = -7~v - 7z + f(t) 

Then, (x, v, z) is a Markovian process with three variables. Finally, model 
(c) becomes a Markovian process with four variables, x, v, z, w. That is, 
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2 = v  

1 dV(x )  
1)= Fz 

M dx 

s (14) 
~ =  - -  - - v + w  

~w-- n2z + ( ~t?~--~B r) 1/2 
= - -  f ( t )  

The matrix-continued-fraction (MCF) method (2'4) can be applied to the 
above three models as reported in ref. 1. From MCF, the velocity spectrum 
(VS) ~b(co), defined by 

f 
oO 

~)(o~) = dt e-i~~ v(0)) (15) 
c o  

can readily be obtained for relatively large values of the parameters ~, 7, 3, 
and f2. 

In the next section, we describe how to simulate these three models 
with analogue electronic circuits and thus obtain ~b(co). 

3. A N A L O G U E  S I M U L A T I O N  

Our systems are simulated by electronic circuits. For example, a 
schematic diagram of model (b) is shown in Fig. 1. The white noise is 
obtained from a Wandel & Golterman model RG1 noise generator, which 
produces an accurately Gaussian noise voltage with a fiat frequency 
response over the band range 0-100 kHz. Before application to the circuit, 
the noise is filtered through a low-pass filter. This ensures that the noise 
has a well-defined correlation time, which is set to be much smaller than 
the time constant of the circuit. The voltage summation, integration, 
inversion, and amplification are accomplished by standard operational 
amplifiers, while the trigonometric function is performed by commercially 
available integrated circuits. We have to simulate our systems within two 

Noise ~ • generotor ond filter 
Z V 

Fig. 1. Schematic diagram of the electronic circuit used for model (b). 
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cycles of the potential, however, since the integrated circuit realizes its 
trigonometric function only over about two cycles. Consequently, a reset 
circuit is required to bring the Brownian particle back to the equivalent 
point in the periodic potential within the region available for the integrated 
circuit, whenever it would otherwise leave this region. The reset circuit is 
not shown in detail, but its operation is straightforward. A pair of voltage 
comparators is operated at the output of x, and they are immediately 
triggered to drive x ~ 0 V when x exceeds the boundary. It is obviously 
essential that the resetting process should be achieved within a time that is 
small compared to any other time scale of importance in the simulation. 
The output voltage from the circuit corresponding to v(t) is analyzed by 
means of a digital data processor (Nicolet LAB80) and ~b(c~) is obtained by 
application of a standard fast Fourier transform (FFT) algorithm. 

4. S I M U L A T I O N  RESULTS 

In this section, we present our simulation results for ~b(~o). We choose 
a, Eb,  and 1/~0= 1/(2n2Eb/Ma2) m as units of length, energy, and time, 
respectively, that is, T* = kB T/Eb, ~* = COo~, etc. 

In Fig. 2, ~b(~o) for models (a) and (b) obtained from analogue simula- 
tion is shown and compared with theoretical results obtained by the use of 
MCF. In this figure, we choose T*=0.5  and ~*= 1.0, and V*= 1.0 for 

/ I 

o . o s  
O 

3 

0 I 
0 1 2 

Fig. 2. Velocity spectra ~b(o~) obtained from analog simulation (zigzag lines) and from the 
MCF method (smooth lines). (a) Model (a) with T* =0.5 and if*= 1.0; (b) model (b) with 
T* =0.5, ~*= 1.0, and 7 " =  1.0. The simulation and theoretical results are evidently in good 
agreement with each other. 
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Fig. 3. Velocity spectra ~(e)) for model (b) with T*=0.5,  (*=0.25,  and 7*=  1.0. The 
smooth line denotes the results from MCF, the zigzag line that from analogue simulation, and 
the circles that from digital simulation. The three results are in good agreement with each 
other. 

model (b), and find that each curve has one peak. These peaks are due to 
the oscillatory motion near the minima of the potential. Theoretical results 
agree with simulation results quite well. Figure 3 shows ~b(co) for model (b) 
with T*=  0.5, if*= 0.25, and 7*= 1.0. The analogue simulation results are 
compared with theoretical results and digital simulation results. In the 

I I I 

00 I 21 I 
~/0,1 o 

Fig, 4.. Velocity spectra obtained from analog simulation (zigzag lines) and from the MCF 
method (smooth lines). (a) @(co) for model (c) with T*=0.5,  (*=1.0,  4"=1.0 ,  and 
g2"2/~ * = 5.0; (b) that for model (b) with T* =0.5, (* = 1.0, and ~* = 5.0. Agreement between 
simulation and theoretical results is quite good. 
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latter figure, the peak of ~b(~o) corresponds to oscillations near the bottoms 
of potential wells. The three results are almost coincident with each other. 
The ~b(co) for model (c) with T* =0.5, ~* = 1.0, ~* = 1.0, and O'2/~ * = 5.0 
and that for model (b) with T* =0.5, ~*= 1.0, and V*= 5.0 are depicted 
in Fig. 4, and analogue simulation results are compared with theoretical 
ones. In this figure, two peaks can be observed in ~b(~o) for model (c). The 
left one corresponds to the peaks in Figs. 2 and 3, and the right one is due 
to the frequency of the random force. In Fig. 4, theoretical results are 
in good agreement with simulation ones. From these results shown in 
Figs. 2 4 ,  we confirm the accuracy of our analogue simulation. 

Next, we simulate model (b) with a small value of V, since MCF 
theory does not work well in the region of small parameters. The result is 
shown in Fig. 5, where T*, ~*, and ~* are specified to be 0.5, 1.0, and 0.1, 
respectively. From Fig. 5, we see that t w o  peaks appear in the ~b(~o) curve. 
To make absolutely certain, we recalculated ~b(~0) with the use of a digital 
computer, the difference scheme for our digital simulation being similar to 
that used in ref. 7. The result is compared with the analogue simulation 
measurements in Fig. 5. The agreement between the two results is quite 
good. The right peak is due to the oscillatory motion near the bottoms of 
the potential. The left peak is an extra new one and was quite unexpected, 
because the random force in model (b) has no characteristic frequencies of 
its own, unlike that in model (c). This extra peak exists for model (b) with 
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Fig. 5. Velocity spectra obtained from analogue (curve) and digital (circles) simulation. T*, 
~*, and ~* are specified to be 0.5, 1.0, and 0.1, respectively. Analogue and digital simulation 
results are in good agreement with each other and confirm the reality of the additional peak 
at low frequencies. 
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~'*<0.8 and ~*< 10.0. The smaller y or ~ becomes, the lower and the 
broader the shape of the extra peak becomes. In order to demonstrate the 
physical origin of this extra peak, v(t) and x(t) measured for the same 
values of parameters as in Fig. 5 are depicted in Fig. 6. We see immediately 
that the Brownian particle has two quite distinct characteristic motional 
patterns. The one which appears on the right-hand side of this figure 
represents oscillatory motion near the bottom of a potential well and the 
other, which appears in the extreme left and center parts of the figure, is 
a slower motion corresponding to the particle moving back and forth over 
several lattice spaces. These two characteristic motional patterns exist 
universally for model (b) in the region of the parameters in which ~b(co) has 
the extra peak. This slow motion has not been observed at all for model 
(a), or for model (b) or (c) with parameter values chosen as in Figs. 2~4. 
We have investigated how the position of this extra peak depends on the 
values of 7 and ~. When the correlation time of the random force 1/7 
decreases, the extra peak is found to shift to the right, finally disappearing 
for about y* = 0.8. It relates to a decrease in the period of the slow oscilla- 
tion because the correlation time of motion decreases with a decrease in the 
correlation time of the random force. When the effective friction constant 

increases, the peak is found to shift toward the right, finally merging into 
the right peak for about if* = 10.0. The reason for this is that the period of 

{ ' I { { ~ ~Ar, AA Ar,~ AIÂ n̂ ~̂ ~̂ Â ^̂ ^̂ , 
o> 0, "',-vw ...... -VW~]~VWVVVVVVVVvw~--~,.~,~," ] 
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Fig. 6. The velocity and position of the Brownian particle of model (b) with the same 
parameter values as in Fig. 5, plotted as a function of time in the same time interval. Two 
characteristic motional patterns are observed in this figure. The one on the right represents the 
oscillation of the particle near the bot tom of a potential well, and the other, which is on the 
extreme left and middle, corresponds  to slow oscillatory mot ion as the particle goes back and 
forth over several lattice spaces. 
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Fig. 7. The velocity spectrum ~b(~o) for model (b) with T*=0.5, ( * =  1.0, and ~*=0.25 
obtained from digital simulation, compared with theoretical results from MCF (circles). The 
MCF theory reproduces the simulation results quite well. 

the slow motion becomes long as a result of increasing the decay time of 
motion due to the decrease of the effective friction constant. 

Finally, in order to obtain further confirmation of the existence of 
the extra peak, ~b(co) for model (b) with T* =0.5, ~*= 1.0, and 7*=0.25 
was computed by the use of MCF. (Since MCF cannot be applied for 
the parameters employed in Fig. 5 and 6 because of the prohibitive length 
of computing time that would be required, we were obliged to choose a 
slightly larger value of 7.) In Fig. 7, we compare the theoretical results 
with those from a digital simulation. They are clearly in good agreement 
with each other, so that the reality of the additional peak in the velocity 
spectrum cannot be in doubt. 

5. D I S C U S S I O N  

H. Risken has made an interesting suggestion to try to account for the 
new peak. He points out (17) that, if the force due to the periodic lattice is 
neglected in (13), one then obtains a linear Langevin equation in v, 

dt 2 = -?~v  - ? - ~  + f ( t )  (16) 

For suitably chosen parameter values, the velocity spectrum corresponding 
to (16) exhibits a peak, and it seems plausible that the latter might be 
related to the additional peak found in the VS of (13). Following this 
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Fig. 8. The velocity spectrum q~(co) for (16) (smooth curve) compared with that for (13) 
obtained from analog (zigzag curve) and digital (circles) simulation. T*, (*, and ~/* are 
specified to be the same values as in Fig. 5. 

suggestion, we have calculated VS of the approximate equation (16): an 
example, for the same set of parameters as those of Fig. 5, is shown 
(smooth curve) in Fig. 8 and compared with the analogue and digital 
results from (13). It is evident that the positions of the peaks are in 
quite good agreement, but their magnitudes and widths differ. The latter 
discrepancies are not at all surprising, however, given the gross approxima- 
tion inherent in our complete neglect of the periodic potential in the deriva- 
tion of (16). It is interesting to note that the dynamics giving rise to the 
new peak, in which the particle gains sufficient energy to move freely across 
several lattice spaces (see above), represents the  classical analogue of a 
Bloch wave in the periodic potential of a crystal. 

6. C O N C L U S I O N  

We have simulated a non-Markovian Brownian-motion model in a 
periodic potential with the aid of analogue electronic circuits, and have 
compared the simulation results with theoretical predictions based on the 
use of MCF for large parameter values. The good agreement between them 
confirms the accuracy of our simulation technique. In the case of model (b) 
with a large correlation time of the random force, an extra new peak has 
been discovered and shown to be closely related to a slow oscillatory 
motion in which the particle goes back and forth across several lattice 



1070 Igarashi e t  aL 

spaces. The  existence of this extra  peak  m a y  be accounted  for semiquan-  
t i ta t ively in terms of an a p p r o x i m a t e  Langevin  equa t ion  in which the effect 
of the per iod ic  po ten t ia l  is ignored.  
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